
cuTensor-CP: High Performance Third-order CP Tensor Decomposition on GPUs

Xiao-Yang Liu1,2 , Han Lu3 , Tao Zhang3,4∗

1Department of Computer Science and Engineering, Shanghai Jiao Tong University, China
2Department of Electrical Engineering, Columbia University, USA

3School of Computer Engineering and Science, Shanghai University, Shanghai, China
4Shanghai Institute for Advanced Communication and Data Science, Shanghai, China

xl2427@columbia.edu, 130210201@shu.edu.cn, taozhang@shu.edu.cn

Abstract
Tensor decompositions that factorize multi-

dimensional data into latent factors have become a
powerful tool for big data analytics and machine
learning, e.g., video processing, deep learning, social
networks, etc. However, time and space complexities
of tensor decomposition algorithms grow rapidly with
the size of tensors. Exploiting parallelisms of tensor
algorithms and accelerating them on many-core GPUs
are promising. In this paper, we develop efficient CP
tensor decomposition on GPUs by exploiting tensor
algorithm parallelism. We implement and optimize key
operations, including tensor matricization and matricized
tensor times Khatri-Rao product (MTTKRP). We fully
optimize the data transmission and reduce memory foot-
print, even employ more efficient calculation processes
with smaller computational complexity. Compared with
the TensorLab library running on a Tesla V100 GPU,
our implementation of CP decomposition achieves up to
5.56× speedup.

Keywords GPU, CP tensor decomposition, matricized
tensor times Khatri-Rao product

1 Introduction
Tensor decompositions, the higher-order analogue to matrix
decomposition (e.g., Singular Value Decomposition (SVD),
Principal Component Analysis (PCA), non-negative ma-
trix decompoistion, etc.), have became a powerful tool for
mining cross-dimension relationships in large-scale multi-
dimensional data. Multi-dimensional data arrays in video
processing, social networks are naturally represented as ten-
sors, and tensor (multiway) decompositions are employed to
perform factor analysis or compression. Tensor decomposi-
tions/factorizations have been widely used in big data analy-
sis [9], computer vision [10] [5], pattern recognition and deep
learning [6][1][7][3][12], and genetic analysis [4], etc. With
the growing needs to process large amount of multi-way data
in a real-time manner, designing high-performance tensor de-
composition has become a critical task.

Existing research in accelerating CP tensor decomposition
has limitations. TensorLab [8] requires long running time,
which was not fully optimized for the GPU architecture. In

∗Tao Zhang is supported by Science and Technology Committee
of Shanghai Municipality under grant No. 19511121002 and No.
19DZ2252600.

Figure 1: Third-order CP tensor decomposition.

this paper, we develop high performance CP tensor decom-
position on GPUs. We use the bottom-up method to optimize
the key operations first, and then accelerate the whole algo-
rithm. Our contributions are summarized as follows.

• We implement key tensor operations, including tensor
matricization and matricized tensor times Khatri-Rao
product (MTTKRP). We propose a novel technique to
avoid tensor matricization and thus reduce the mem-
ory consumption of MTTKRP. Moreover, for the matrix
multiplication in MTTKRP, we divide large matrix into
small matrices and map them onto tensor cores.

• We implement and optimize CP tensor decomposition
on GPUs. Using the optimized key tensor operations,
we map the algorithm onto GPU, and comprehensively
reduce the memory occupation and the number of calcu-
lations to further improve the performance.

• We perform numerical experiments to evaluate the per-
formance of MTTKRP and CP tensor decomposition.
For the MTTKRP operation, we mainly compare with
GPU baseline. For CP tensor decomposition, We com-
pare with the TensorLab-GPU [8]. Our CP decomposi-
tion achieves up to 5.56× speedups.

The remainder of this paper is organized as follows. Sec-
tion 2 describes key tensor operations and briefly summarizes
the CP tensor decomposition algorithm. Section 3 presents
the design, implementation and optimizations of key opera-
tions. In Section 4, we evaluate the performance of the key
tensor operations and our implementation on GPUs. The con-
clusions are given in Section 5.

2 CP Tensor Decomposition
In this section, we first briefly introduce notations and key
tensor operations. Then, we describe the CP tensor decom-
position algorithm.

Algorithm 1 ALS CP tensor decomposition
1: Input: tensor X ∈ RI×J×K , rank R.
2: Randomly initialize A ∈ RI×R,B ∈ RJ×R,C ∈

RK×R,
3: while convergence criterion is not met do
4: A←X(1)(C �B)(C>C. ∗B>B)†,
5: B ←X(2)(C �A)(C>C. ∗A>A)†,
6: C ←X(3)(B �A)(B>B. ∗A>A)†,
7: end while
8: Output: A,B,C.

2.1 Notions and Key Tensor Operations
We use lowercase boldface letters, uppercase boldface letters
and uppercase calligraphic letters to denote vectors, matrices
and tensors, respectively, e.g., x ∈ RI , X ∈ RI×J , and
X ∈ RI×J×K . Xj or X(:, j) denotes the j-th column, and
X(i, j) or Xij denotes the (i, j)-th element, the (i, j, k)-th
entry is X (i, j, k) or Xijk. We use .∗, ◦, � and ⊗ to denote
Hadamard (element-wise) product, outer product, Khatri-Rao
product and Kronecker (tensor) product. We use > and † to
the matrix transpose and Moore-Penrose pseudo-inverse, re-
spectively. Indices range from 1 to their capital letters, e.g.,
i = 1, ..., I or i ∈ [I].

Rank-one tensor: A third-order tensor X ∈ RI×J×K has
rank one if it is the outer product of three vectors.

Tensor matricization (a.k.a. tensor unfolding or flat-
tening): Tensor matricization converts a tensor into a matrix.
The mode-n matricization of a tensor X ∈ RI1×I2×I3 is de-
noted by X(n), which arranges the mode-n tubes to be the
columns of the resulting matrix. A tensor element (i1, i2, i3)
is mapped to matrix element (in, j) for n = 1, 2, 3, where

j = 1 +

3∑
k=1
k 6=n

(ik − 1)Jk with Jk =

k−1∏
m=1
m 6=n

Im. (1)

Matricized tensor times Khatri-Rao product (MT-
TKRP): For a tensor X ∈ RI×J×K and given matrices
A,B,C, the mode-1, mode-2 and mode-3 MTTKRP is de-
fined as X(1)(C � B), X(2)(C � A) and X(3)(B � A),
respectively.

2.2 CP Tensor Decomposition Algorithm
We focus on CP tensor decomposition [2], as shown in Fig.

1. The CP tensor decomposition factorizes a tensor into the
sum of rank-one tensor components. For a third-order tensor
X ∈ RI×J×K and target rank R, we have X ≈

∑R
r=1 Ar ◦

Br ◦Cr, where Ar ∈ RI , Br ∈ RJ , Cr ∈ RK for r ∈ [R].
The target is to compute a CP tensor decomposition with R
components that best approximates X , i.e.,

argmin“X ‖X − “X‖F (2)

where “X =
∑R

r=1 λrAr ◦ Br ◦ Cr = Jλ;A,B,CK and
A ∈ RI×R,B ∈ RJ×R,C ∈ RK×R, respectively. The
Frobenius norm of a tensor X ∈ RI×J×K is defined as
‖X‖F =

»∑I
i=1

∑J
j=1

∑K
k=1 |Xijk|2.

The third-order CP tensor decomposition is given in Alg.
1. The alternating least square method (ALS) fixes all but one
matrix and reduces the CP tensor decomposition problem to a
linear least-squares problem. In line 2, the factor matrices are
randomly initialized. Lines 3-7 are the iterative process and
the algorithm updates the factor matrices (lines 4-6) alterna-
tively. The algorithm terminates when the approximation er-
ror is below a pre-specified threshold or it reaches a preset
maximum number of iterations.

3 Optimization of Key Tensor Operations
The horizontal, lateral, and frontal slices of a third-order ten-
sor X are denoted as X (i, :, :), X (:, j, :), and X (:, :, k), re-
spectively. Alternatively, the k-th frontal slice X (:, :, k) is
denoted as X (k).

3.1 Tensor Matricization
Tensor matricization is a fundamental operation in CP tensor
decomposition. In Alg. 1, lines 4-6 need to compute dif-
ferent mode matricizations X(1),X(2) and X(3). In conven-
tional implementation, GPU allocates additional memory and
performs explicit tensor matricization, which introduces sub-
stantial memory and time cost.

We observe that explicit tensor matricizations can be elim-
inated to save computation and memory space by exploiting
the storage format in the GPU memory. A third-order ten-
sor X ∈ RI×J×K is stored in GPU memory in slice-by-slice,
column-major layout using a 1D array x, whereXijk is stored
at x[(k− 1)IJ + (j − 1)I + i]. First, the column-major stor-
age of mode-1 matricization X(1) ∈ RI×JK in memory is
exactly the same as x. Second, by transposing each slice of
X , we obtain X(2). Third, the row-major storage of mode-3
matricization X(3) is exactly the same as x. Therefore, by
exploiting these property, we are able to use X directly and
avoid explicit tensor matricization to save computation and
GPU memory.

In CUDA programming, we obtain the three matriciza-
tions X(1),X(2),X(3) by different ways of fetching the 1D
data in the memory. In the cuBLAS library, cublasSgemm()
and cublasSgemmBatchedStrided() are interfaces of matrix
multiplication and parallel matrix multiplication. For mode-
1 matricization X(1) ∈ RI×JK , we use cublasSgemm()
and set the main dimension as I . For mode-2 matricization
X(2) ∈ RJ×IK , we use cublasSgemmBatchedStrided() and
set the leading dimension to J , and the number of matrix mul-
tiplications to K. For mode-3 matricization X(3) ∈ RK×IJ ,
we find that the column-major storage of X in 1D array is
same as the transpose of X(3). Therefore, we use cublasS-
gemm() and set the leading dimension as K. In general,
through the access strategy, we cleverly regard physical stor-
age data as the form of logical storage we require.

3.2 Matricized Tensor Times Khatri-Tao Product
(MTTKRP)

MTTKRP is a basic operation in tensor computing. The con-
vention approach to compute MTTKRP include the following
three steps:

Figure 2: Block computation for the MTTKRP operation.

• Matricizing a tensor into a matrix: X → X(1), X(2),
X(3);

• Calculating Khatri-Rao product and obtain (C � B),
(C �A), (B �A);

• Executing matrix multiplication: (X(1)(C � B)),
(X(2)(C �A)), (X(3)(B �A)).

We eliminate the tensor matricization in the first step through
the technique in Section 3.1. Since in the third step, tensor
matricization results in a fat matrix and the Khatri-Rao prod-
uct results in a tall matrix, we use tensor core to accelerate
this matrix multiplication.

Batching Block Computations onto Tensor Cores
In Alg. 1, the main while-loop in lines 4-6 performs three
MTTKRP operations. This process is time-consuming and
becomes a bottleneck. As matrix multiplication can be cal-
culated in a block manner, we divide the large matrices into
smaller matrices and batch the block matrix multiplications
onto tensor cores.

Tensor cores are novel computing units introduced in lat-
est NVIDIA GPU architectures including Volta and Turing.
Compared with conventional CUDA cores, tensor cores are
especially efficient for accelerating the computation of block
matrix multiplications. Tesla V100 GPU has 640 tensor cores
in total. The matrix multiplication of two 4 × 4 matrices
can be calculated on a tensor core at one time. Fig. 2 illus-
trates the computing of X(1)(C�B), where X(1) ∈ RI×JK ,
C ∈ RK×R and B ∈ RJ×R. We divide the fat matrix X(1)

and the tall matrix C � B into (IJK)/16 and (JKR)/16
small blocks, respectively. Then, we carry out a total of
I/4× (JK)/4× (R/4) block multiplications and batch them
onto 640 tensor cores. When one is calculated, the blocks in
the queue will immediately occupy the computing resources.

4 Performance Evaluations
We run all experiments on a server with an NVIDIA Tesla
V100 GPU and dual Intel Xeon E5-2640 V4 CPUs. The
Tesla V100 GPU has 32 GB device memory, 5, 120 CUDA
cores and 640 tensor cores. Each CPU has 10 cores running at
2.4GHz. The operating system of the server is 64-bit Ubuntu
18.04.

We use running time as performance metric. The speedup
of our GPU implementation over a reference GPU implemen-
tation is calculated as: (running time of a reference GPU im-
plementation) / (running time of our GPU implementation).
The compared GPU implementations are listed out as follows

• GPU Baseline: We provide baseline implementation on
GPU using the BLAS and cuSOLVER libraries. This
implementation does not utilize the optimization tech-
niques in Section 3.

• TensorLab-GPU [8]: TensorLab is a well-maintained
MATLAB toolbox for tensor computations. We run Ten-
sorLab on GPUs.

• Our GPU implementation (Ours): For the key tensor
operations and CP tensor decomposition algorithm, our
implementations employ the optimization techniques in
Section 3.

4.1 Key Tensor Operations
In this subsection, our experiments are running on Tesla V100
GPU. Running time is measured in log scale. For the key ten-
sor operation (MTTKRP), we report the kernel running time
that do not include the data transfer time between CPU and
GPU. Because the tensor operation is normally called during
the computation process of the tensor decomposition algo-
rithms and the data are already in the GPU device memory.

Fig. 3 shows the running time and speedups of the mode-
1 MTTKRP, mode-2 MTTKRP and mode-3 MTTKRP with
varying tensor and matrix sizes, respectively. Our input is a
third-order tensor I×I×I and two matrices of the same size
I × R, which R is set to be 0.1 × I and the corresponding
outputs are three tensors of the same size I ×R.

In Fig. 3(a), compared with GPU Basline, our mode-1 MT-
TKRP using CUDA cores and tensor cores achieves up to
1.84× and 5.34× speedups, respectively.

In Fig. 3(b), our mode-2 MTTKRP using CUDA cores and
tensor cores achieves up to 1.04× and 1.43× speedups, re-
spectively. The reason for the low performance improvement
than mode-1 MTTKRP is that mode-2 MTTKPR cannot fully
avoid the tensor matricization operation.

In Fig. 3(c), our mode-3 MTTKRP using CUDA cores and
tensor cores achieves up to 38.55× and 56.21× speedups, re-
spectively. The reason is that the original tensor matricization
in the operation of mode-3 MTTKPR breaks the continuity of
data access seriously. Eliminating such a tensor matricization
operation leads to this high performance improvement.

4.2 Third-order CP Tensor Decomposition
Fig. 4 shows the running time and speedups of the CP tensor
decomposition. We test the third-order tensor of size I×I×I
varying from 100 × 100 × 100 to 1, 200 × 1, 200 × 1, 200.
Two implementations are compared: our GPU implemen-
tation and TensorLab-GPU [8]. Our GPU implementation
achieves up to 5.56× speedup versus the TensorLab-GPU [8].

5 Conclusions
Tensor operations have attracted lots of attention in recent
years. Tensor decompositions have been widely used in big

��������������������������
���

���

��

��

��

��

��

���

�
�

	
�
�

�
�
�
�
�

�
�

�
�
�
�

�
�
�

���������×���×����
��	�����×��

���	��
����
�����
�����������������

�

�

�

��

��

��

��

��
�������������������	��
����
�������������������������������	��
�����

�
�
�
�
�
�
�
�

(a) mode-1 MTTKRP.

�������	����	��
��������	�
���

���

��

��

��

��

��

���

�
�

	
�
�

�
�
�
�
�

�
�

�
�
�
�

�
�
�

���������×���×����
��	�����×��

���	��
����
�����
�����������������

�

�

�

�

�

	

��

�

�

�

�������������������	��
����
�������������������������������	��
����

�
�
�
�
�
�
�
�

(b) mode-2 MTTKRP.

��������������������������

���

���

���

��

��

��

��

��

���

���

���

�
�

	
�
�

�
�
�
�
�

�
�

�
�
�
�

�
�
�

���������×���×����
��	�����×��

���	��
�����
�����
�������������������

�

��

��

��

��

���

���

���

���

���
�������������������	��
����
�������������������������������	��
����

�
�
�
�
�
�
�
�

(c) mode-3 MTTKRP.

Figure 3: Running time and speedups of MTTKRP in three modes, respectively.

���������������������	��
��������������

���

���

���

���

��

��

��

��

��

��

��

�
�
�
�

�
	
�
�

�
�
�
�
�
�

�
�
�
�

��	�
���������×���×�������	���

��������	����
�����

�

�

�

�

�

��

��

��

��

��

��
����������
����������������	����

�
�
�
�
�
�
�
�

Figure 4: Running time and speedups of CP decomposition.

data analysis, computer vision, pattern recognition, and deep
learning, etc. However, due to the high computational com-
plexity, existing implementations are not satisfactory in terms
of running time and memory consumption. In this paper,
we optimized the computations of CP tensor decomposition
on many-core GPUs. We proposed optimization strategies
for reduced memory consumption to accelerate tensor oper-
ations. Compared with TensorLab-GPU running on a Tesla
V100 GPU, our implementation of CP tensor decomposition
achieves up to a 5.56× speedup. Our future work will incor-
porate this implementation into the cuTensor library [11].

References
[1] Yunpeng Chen, Xiaojie Jin, Bingyi Kang, Jiashi Feng,

and Shuicheng Yan. Sharing residual units through col-
lective tensor factorization to improve deep neural net-
works. In IJCAI, pages 635–641, 2018.

[2] Lieven De Lathauwer, Bart De Moor, and Joos Van-
dewalle. A multilinear singular value decomposition.
SIAM Journal on Matrix Analysis and Applications,
21(4):1253–1278, 2000.

[3] Xiaochen Han, Bo Wu, Zheng Shou, Xiao-Yang Liu,

Yimeng Zhang, and Linghe Kong. Tensor FISTA-Net
for real-time snapshot compressive imaging. In AAAI,
pages 10933–10940, 2020.

[4] Victoria Hore, Ana Viñuela, Alfonso Buil, Julian
Knight, Mark I McCarthy, Kerrin Small, and Jonathan
Marchini. Tensor decomposition for multiple-tissue
gene expression experiments. Nature Genetics,
48(9):1094, 2016.

[5] Fei Jiang, Xiao-Yang Liu, Hongtao Lu, and Ruimin
Shen. Efficient multi-dimensional tensor sparse coding
using t-linear combination. In Thirty-Second AAAI Con-
ference on Artificial Intelligence, 2018.

[6] Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba,
Ivan Oseledets, and Victor Lempitsky. Speeding-up
convolutional neural networks using fine-tuned CP-
decomposition. ICLR, 2015.

[7] Jiawei Ma, Xiao-Yang Liu, Zheng Shou, and Xin
Yuan. Deep tensor ADMM-Net for snapshot compres-
sive imaging. In Proceedings of the IEEE International
Conference on Computer Vision, pages 10223–10232,
2019.

[8] Nico Vervliet, Otto Debals, Laurent Sorber, Marc
Van Barel, and Lieven De Lathauwer. Tensorlab 3.0.
available online, URL: www. tensorlab. net, 2016.

[9] Yuto Yamaguchi and Kohei Hayashi. Tensor decompo-
sition with missing indices. In IJCAI, pages 3217–3223,
2017.

[10] Yinchong Yang, Denis Krompass, and Volker Tresp.
Tensor-train recurrent neural networks for video classi-
fication. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, pages 3891–
3900. JMLR. org, 2017.

[11] Tao Zhang, Xiao-Yang Liu, Xiaodong Wang, and An-
war Walid. cuTensor-Tubal: Efficient primitives for
tubal-rank tensor learning operations on gpus. IEEE
Transactions on Parallel and Distributed Systems,
31(3):595–610, 2019.

[12] Yimeng Zhang, Xiao-Yang Liu, Bo Wu, and Anwar
Walid. Video synthesis via transform-based tensor neu-
ral networks. In ACM Multimedia, 2020.

	Introduction
	CP Tensor Decomposition
	Notions and Key Tensor Operations
	CP Tensor Decomposition Algorithm

	Optimization of Key Tensor Operations
	Tensor Matricization
	Matricized Tensor Times Khatri-Tao Product (MTTKRP)
	Batching Block Computations onto Tensor Cores

	Performance Evaluations
	Key Tensor Operations
	Third-order CP Tensor Decomposition

	Conclusions

